Rotation search and point cloud registration are two fundamental problems in robotics and computer vision, which aim to estimate the rotation and the transformation between the 3D vector sets and point clouds, respectively. Due to the presence of outliers, probably in very large numbers, among the putative vector or point correspondences in real-world applications, robust estimation is of great importance. In this paper, we present ICOS (Inlier searching using COmpatible Structures), a novel, efficient and highly robust solver for both the correspondence-based rotation search and point cloud registration problems. Specifically, we (i) propose and construct a series of compatible structures for the two problems where various invariants can be established, and (ii) design three time-efficient frameworks, the first for rotation search, the second for known-scale registration and the third for unknown-scale registration, to filter out outliers and seek inliers from the invariant-constrained random sampling based on the compatible structures proposed. In this manner, even with extreme outlier ratios, inliers can be sifted out and collected for solving the optimal rotation and transformation effectively, leading to our robust solver ICOS. Through plentiful experiments over standard datasets, we demonstrate that: (i) our solver ICOS is fast, accurate, robust against over 95% outliers with nearly 100% recall ratio of inliers for rotation search and both known-scale and unknown-scale registration, outperforming other state-of-the-art methods, and (ii) ICOS is practical for use in multiple real-world applications.


翻译:旋转搜索和点云登记是机器人和计算机视觉的两个基本问题,目的是分别估计3D矢量和点云之间的旋转和变化。由于在现实世界应用中,在模拟矢量或点对应中存在外源,可能数量非常多,因此,强有力的估计非常重要。在本文中,我们介绍了ICOS(使用可移动结构进行离线搜索),这是对基于通信的旋转搜索和点云登记问题的一种新颖、高效和高度强大的解决方案。具体地说,我们(一)为两种问题提出和建造一系列兼容的结构,其中可以建立多种异差,以及(二)设计三个时间效率高的框架,第一个是旋转搜索,第二个是已知的矢量登记,第三个是未知规模的登记,以过滤外源源,并寻求根据所拟议的兼容结构从内置不动的随机采集的离线。以这种方式,即使存在极端的外部偏差率,内流值也可以被筛选和收集出一系列兼容的结构,以有效解决最佳的轮换和变换结构,从而实现我们所知道的精确的精确的IS的精确的IS(通过我们所知道的精确的精确的精确的搜索和快速的IS)的精确的精确的IS) 测试,从而展示我们的精确的精确的精确的精确的IS-S-

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
110+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
12+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】点云到网格的回归算法实现
泡泡机器人SLAM
8+阅读 · 2018年11月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月28日
3D Face Modeling from Diverse Raw Scan Data
Arxiv
5+阅读 · 2019年2月13日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
12+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】点云到网格的回归算法实现
泡泡机器人SLAM
8+阅读 · 2018年11月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员