Cosmology in the near future promises a measurement of the sum of neutrino masses, a fundamental Standard Model parameter, as well as substantially-improved constraints on the dark energy. We use the shape of the BOSS redshift-space galaxy power spectrum, in combination with CMB and supernova data, to constrain the neutrino masses and the dark energy. Essential to this calculation are several recent advances in non-linear cosmological perturbation theory, including FFT methods, redshift space distortions, and scale-dependent growth. Our 95% confidence upper bound of 200 meV on the sum of masses degrades substantially to 770 meV when the dark energy equation of state and its first derivative are also allowed to vary, representing a significant challenge to current constraints. We also study the impact of additional galaxy bias parameters, finding that a velocity bias or a more complicated scale-dependent density bias shift the preferred neutrino mass values 20%-30% lower while minimally impacting the other cosmological parameters.
翻译:近期的宇宙学承诺测量中微子质量的总和, 一个基本的标准模型参数, 以及对暗能量的大幅改进。 我们使用 BOSS 红转移空间星系动力谱的形状, 结合 CMB 和超新星数据, 限制中微子质量和暗能量。 此计算的关键是非线性宇宙扰动理论的最新进展, 包括FFFT 方法、 红转移空间扭曲, 以及以比例为基础的增长。 当允许国家及其第一个衍生物的暗能量方程式变换时, 我们的95 % 信任度在质量总和上为200MV, 大幅降低到 770MV, 是对当前限制的重大挑战。 我们还研究了其他星系偏差参数的影响, 发现速度偏差或更复杂的基于规模的密度偏差使首选的中微子质量值降低 20%- 30, 而对其他宇宙参数的影响最小 。