The majority of knowledge graph embedding techniques treat entities and predicates as separate embedding matrices, using aggregation functions to build a representation of the input triple. However, these aggregations are lossy, i.e. they do not capture the semantics of the original triples, such as information contained in the predicates. To combat these shortcomings, current methods learn triple embeddings from scratch without utilizing entity and predicate embeddings from pre-trained models. In this paper, we design a novel fine-tuning approach for learning triple embeddings by creating weak supervision signals from pre-trained knowledge graph embeddings. We develop a method for automatically sampling triples from a knowledge graph and estimating their pairwise similarities from pre-trained embedding models. These pairwise similarity scores are then fed to a Siamese-like neural architecture to fine-tune triple representations. We evaluate the proposed method on two widely studied knowledge graphs and show consistent improvement over other state-of-the-art triple embedding methods on triple classification and triple clustering tasks.


翻译:大部分知识图形嵌入技术将实体和上游作为单独的嵌入矩阵处理,使用聚合功能来构建输入的三重代表。 但是,这些聚合物是亏损的,也就是说,它们不能捕捉原始三重的语义,例如上游所含的信息。为了克服这些缺陷,目前的方法是从零到零学出三重嵌入,而没有利用实体,也没有利用预先培训的模型的上游嵌入。在本文件中,我们设计了一种新的微调方法,通过从预先培训的知识图形嵌入中生成微弱的监督信号来学习三重嵌入。我们开发了一种方法,从知识图表中自动取样三重,并估算其与预先培训的嵌入模型的对等相似之处。这些对称相似的分数随后被输入到一个像暹米色的神经结构中,以微调三重表示。我们评价了两个广泛研究的知识图表的拟议方法,并显示在三重分类和三重组合任务方面与其他最先进的三重嵌入方法相比不断改进。

1
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
27+阅读 · 2020年6月19日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
15+阅读 · 2019年9月11日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员