To enable robots to achieve high level objectives, engineers typically write scripts that apply existing specialized skills, such as navigation, object detection and manipulation to achieve these goals. Writing good scripts is challenging since they must intelligently balance the inherent stochasticity of a physical robot's actions and sensors, and the limited information it has. In principle, AI planning can be used to address this challenge and generate good behavior policies automatically. But this requires passing three hurdles. First, the AI must understand each skill's impact on the world. Second, we must bridge the gap between the more abstract level at which we understand what a skill does and the low-level state variables used within its code. Third, much integration effort is required to tie together all components. We describe an approach for integrating robot skills into a working autonomous robot controller that schedules its skills to achieve a specified task and carries four key advantages. 1) Our Generative Skill Documentation Language (GSDL) makes code documentation simpler, compact, and more expressive using ideas from probabilistic programming languages. 2) An expressive abstraction mapping (AM) bridges the gap between low-level robot code and the abstract AI planning model. 3) Any properly documented skill can be used by the controller without any additional programming effort, providing a Plug'n Play experience. 4) A POMDP solver schedules skill execution while properly balancing partial observability, stochastic behavior, and noisy sensing.


翻译:为使机器人能够实现高层次的目标,工程师通常会写一些应用现有专门技能的脚本,例如导航、物体探测和操作来实现这些目标。 写好脚本具有挑战性, 因为他们必须明智地平衡物理机器人动作和传感器固有的随机性, 以及它所拥有的有限信息。 原则上, AI规划可以用来应对这一挑战, 并自动产生良好的行为政策。 但是这需要克服三个障碍。 首先, AI必须理解每种技能对世界的影响。 第二, 我们必须弥合我们理解技能的抽象程度与其代码中使用的低级别变量之间的差距。 第三, 需要大量整合努力才能将所有组成部分联系起来。 我们描述一种将机器人技能纳入一个工作自主机器人控制器的方法, 该操作器可以安排其技能以完成特定任务并带来四个关键优势。 1) 我们的Genecial Skill文件语言(GSDL) 使得代码文件更加简单、 压缩, 并且使用来自概率性编程语言的理念更清晰地表达。 2) 直言的抽象的抽象的抽图绘制(AM) 能够弥合低级别机器人码码码码码码码码码码码码码码码码码码码码码码码码码码码码码码码码码码码码码和抽象化的操作, 以及使用的任何缩缩缩缩缩缩缩操作模型, 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员