What is the ideal regression (if any) for estimating average causal effects? We study this question in the setting of discrete covariates, deriving expressions for the finite-sample variance of various stratification estimators. This approach clarifies the fundamental statistical phenomena underlying many widely-cited results. Our exposition combines insights from three distinct methodological traditions for studying causal effect estimation: potential outcomes, causal diagrams, and structural models with additive errors.
翻译:估计平均因果效应的理想回归(如果有的话)是什么?我们在设定离散共变法时研究这一问题,从中得出各种分层估测者的有限抽样差异的表达方式。这种方法澄清了许多广泛引用的结果背后的基本统计现象。 我们的推理结合了研究因果估计的三个不同方法传统的见解:潜在结果、因果图和带有添加错误的结构模型。