Deep anomaly detection aims to separate anomaly from normal samples with high-quality representations. Pretrained features bring effective representation and promising anomaly detection performance. However, with one-class training data, adapting the pretrained features is a thorny problem. Specifically, the existing optimization objectives with global target often lead to pattern collapse, i.e. all inputs are mapped to the same. In this paper, we propose a novel adaptation framework including simple linear transformation and self-attention. Such adaptation is applied on a specific input, and its k nearest representations of normal samples in pretrained feature space and the inner-relationship between similar one-class semantic features are mined. Furthermore, based on such framework, we propose an effective constraint term to avoid learning trivial solution. Our simple adaptive projection with pretrained features(SAP2) yields a novel anomaly detection criterion which is more accurate and robust to pattern collapse. Our method achieves state-of-the-art anomaly detection performance on semantic anomaly detection and sensory anomaly detection benchmarks including 96.5% AUROC on CIFAR-100 dataset, 97.0% AUROC on CIFAR-10 dataset and 88.1% AUROC on MvTec dataset.


翻译:深度异常点检测旨在将异常现象与具有高质量表现的正常样本分离开来; 预先训练的特征带来有效的代表性和有希望的异常现象检测性表现; 然而,使用单级训练数据,调整预先训练的特征是一个棘手的问题。 具体地说,现有具有全球目标的优化目标往往会导致模式崩溃,即所有输入都映射到同一位置。 在本文中,我们建议了一个新的适应框架,包括简单的线性转换和自我注意。这种适应应用适用于特定输入,在预先训练的特征空间和类似单级语义特征之间的内缘关系中,通常样本的近距离表示出其正常的表示; 此外,根据这种框架,我们提出了一个有效的限制术语,以避免学习微不足道的解决方案。 我们的简单适应性预测带有预先训练的特征(SAP2),产生了一种新的异常现象检测标准,对于模式崩溃来说更加准确和有力。 我们的方法在语义异常点检测和感官异常点检测基准方面达到了最先进的异常现象表现,包括CFAR-100数据集的96.5% AUROC、CIFAR-10数据集的97.0% AUROC和MvTec数据集的881% AUROC。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
32+阅读 · 2021年9月16日
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Arxiv
9+阅读 · 2021年3月3日
Arxiv
4+阅读 · 2019年5月1日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Top
微信扫码咨询专知VIP会员