Let $\Lambda$ be the collection of all probability distributions for $(X,\widetilde{X})$, where $X$ is a fixed random vector and $\widetilde{X}$ ranges over all possible knockoff copies of $X$ (in the sense of \cite{CFJL18}). Three topics are developed in this paper: (i) A new characterization of $\Lambda$ is proved; (ii) A certain subclass of $\Lambda$, defined in terms of copulas, is introduced; (iii) The (meaningful) special case where the components of $X$ are conditionally independent is treated in depth. In real problems, after observing $X=x$, each of points (i)-(ii)-(iii) may be useful to generate a value $\widetilde{x}$ for $\widetilde{X}$ conditionally on $X=x$.
翻译:Let\Lambda$是美元(X)的所有概率分布的集合,其中X美元是固定的随机矢量,而$/全盘量{X}是所有可能的入门副本中所有可能的X美元(Cite{CFJL18}含义)的折射范围。本文提出了三个主题:(一) 证明美元的新特性;(二) 引入了以千叶素为定义的某些小类美元(Lambda$);(三) 以有条件独立方式处理X美元组成部分的(有意义的)特殊案例。在实际问题中,在观察美元=X美元之后,每个点(一-(二)-(三)可能有用,以美元=x美元为条件,产生美元(全盘量)=X美元的价值(一)-(二)-(三)[x][x]美元]。