Edges in many real-world social/information networks are associated with rich text information (e.g., user-user communications or user-product reviews). However, mainstream network representation learning models focus on propagating and aggregating node attributes, lacking specific designs to utilize text semantics on edges. While there exist edge-aware graph neural networks, they directly initialize edge attributes as a feature vector, which cannot fully capture the contextualized text semantics of edges. In this paper, we propose Edgeformers, a framework built upon graph-enhanced Transformers, to perform edge and node representation learning by modeling texts on edges in a contextualized way. Specifically, in edge representation learning, we inject network information into each Transformer layer when encoding edge texts; in node representation learning, we aggregate edge representations through an attention mechanism within each node's ego-graph. On five public datasets from three different domains, Edgeformers consistently outperform state-of-the-art baselines in edge classification and link prediction, demonstrating the efficacy in learning edge and node representations, respectively.
翻译:许多真实世界的社会/信息网络的边缘与丰富的文本信息相关(例如用户用户通信或用户产品审查),然而,主流网络代表性学习模式侧重于传播和汇集节点属性,缺乏在边缘使用文字语义的具体设计。虽然存在边视图像神经网络,但它们直接将边缘属性初始化为特性矢量,无法充分捕捉背景化文字边缘的语义。在本文中,我们提议以图表增强型变异器为基础建立一个框架,通过以背景化方式在边缘建模文本,进行边缘和节点代表性学习。具体地说,在边缘代表学习中,我们将网络信息注入每个变异层,当将边缘文本编码时;在结点表学习中,我们通过每个节点自我图内的一个关注机制,将边缘表达汇总。在三个不同领域的五个公共数据集中,Edgefreds在边缘分类和链接预测中一贯地超越了最先进的基线,显示了学习边缘和节点的功效。