Edges in many real-world social/information networks are associated with rich text information (e.g., user-user communications or user-product reviews). However, mainstream network representation learning models focus on propagating and aggregating node attributes, lacking specific designs to utilize text semantics on edges. While there exist edge-aware graph neural networks, they directly initialize edge attributes as a feature vector, which cannot fully capture the contextualized text semantics of edges. In this paper, we propose Edgeformers, a framework built upon graph-enhanced Transformers, to perform edge and node representation learning by modeling texts on edges in a contextualized way. Specifically, in edge representation learning, we inject network information into each Transformer layer when encoding edge texts; in node representation learning, we aggregate edge representations through an attention mechanism within each node's ego-graph. On five public datasets from three different domains, Edgeformers consistently outperform state-of-the-art baselines in edge classification and link prediction, demonstrating the efficacy in learning edge and node representations, respectively.


翻译:许多真实世界的社会/信息网络的边缘与丰富的文本信息相关(例如用户用户通信或用户产品审查),然而,主流网络代表性学习模式侧重于传播和汇集节点属性,缺乏在边缘使用文字语义的具体设计。虽然存在边视图像神经网络,但它们直接将边缘属性初始化为特性矢量,无法充分捕捉背景化文字边缘的语义。在本文中,我们提议以图表增强型变异器为基础建立一个框架,通过以背景化方式在边缘建模文本,进行边缘和节点代表性学习。具体地说,在边缘代表学习中,我们将网络信息注入每个变异层,当将边缘文本编码时;在结点表学习中,我们通过每个节点自我图内的一个关注机制,将边缘表达汇总。在三个不同领域的五个公共数据集中,Edgefreds在边缘分类和链接预测中一贯地超越了最先进的基线,显示了学习边缘和节点的功效。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
124+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
35+阅读 · 2022年3月14日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
34+阅读 · 2022年2月15日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关论文
Arxiv
35+阅读 · 2022年3月14日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
34+阅读 · 2022年2月15日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员