This paper presents our solution for the 2nd COVID-19 Severity Detection Competition. This task aims to distinguish the Mild, Moderate, Severe, and Critical grades in COVID-19 chest CT images. In our approach, we devise a novel infection-aware 3D Contrastive Mixup Classification network for severity grading. Specifcally, we train two segmentation networks to first extract the lung region and then the inner lesion region. The lesion segmentation mask serves as complementary information for the original CT slices. To relieve the issue of imbalanced data distribution, we further improve the advanced Contrastive Mixup Classification network by weighted cross-entropy loss. On the COVID-19 severity detection leaderboard, our approach won the first place with a Macro F1 Score of 51.76%. It significantly outperforms the baseline method by over 11.46%.
翻译:本文介绍了我们第2次COVID-19严重性探测竞赛的解决方案。 此项任务旨在区分COVID-19胸腔CT图像中的低、 中、 严重和关键等级。 我们的方法是设计一个新型的感染认知3D对立混合分类网络, 用于严重程度分级。 外观上, 我们训练了两个分解网络, 先提取肺部区域, 然后再提取内脏病区域。 分解面罩作为原始CT切片的补充信息。 为了缓解数据分布不平衡的问题, 我们通过加权交叉性损失, 进一步改进先进的对比混合分类网络。 在COVID-19严重性检测头板上, 我们的方法首先赢得了51.76%的宏高F1分数。 它大大超过基准方法的11.46% 。