Biological neurons and their in-silico emulations for neuromorphic artificial intelligence (AI) use extraordinarily energy-efficient mechanisms, such as spike-based communication and local synaptic plasticity. It remains unclear whether these neuronal mechanisms only offer efficiency or also underlie the superiority of biological intelligence. Here, we prove rigorously that, indeed, the Bayes-optimal prediction and inference of randomly but continuously transforming environments, a common natural setting, relies on short-term spike-timing-dependent plasticity, a hallmark of biological synapses. Further, this dynamic Bayesian inference through plasticity enables circuits of the cerebral cortex in simulations to recognize previously unseen, highly distorted dynamic stimuli. Strikingly, this also introduces a biologically-modelled AI, the first to overcome multiple limitations of deep learning and outperform artificial neural networks in a visual task. The cortical-like network is spiking and event-based, trained only with unsupervised and local plasticity, on a small, narrow, and static training dataset, but achieves recognition of unseen, transformed, and dynamic data better than deep neural networks with continuous activations, trained with supervised backpropagation on the transforming data. These results link short-term plasticity to high-level cortical function, suggest optimality of natural intelligence for natural environments, and repurpose neuromorphic AI from mere efficiency to computational supremacy altogether.


翻译:生物神经及其在硅膜内模拟神经形态人造智能(AI)使用超高节能机制,例如以钉子为基础的通信和地方合成造型塑料。这些神经神经机制是否仅能提供效率,还是也成为生物智能优势的基础,目前还不清楚。在这里,我们严格地证明,事实上,贝耶斯最佳预测和随机但持续变化环境的推论 -- -- 一种共同的自然环境 -- -- 依赖于短期的快速快速刺激依赖的可塑性,是生物突触的标志。此外,这种动态的贝耶斯通过可塑性使模拟中脑皮层的电路能够识别以前看不见的、高度扭曲的动态刺激性。这还引入了生物模型型的人工智能,这是在视觉任务中首先克服了深层学习和超越人造神经网络的多重局限性。 螺旋状网络是闪烁和事件基础的,仅经过未经监视和本地的可塑性训练,从小、狭小和静态的智能级智能循环,通过经训练的智能智能级的智能网络到不断更新的自然数据流变现。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
26+阅读 · 2021年7月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年7月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员