Most time series observed in practice exhibit time-varying trend (first-order) and autocovariance (second-order) behaviour. Differencing is a commonly-used technique to remove the trend in such series, in order to estimate the time-varying second-order structure (of the differenced series). However, often we require inference on the second-order behaviour of the original series, for example, when performing trend estimation. In this article, we propose a method, using differencing, to jointly estimate the time-varying trend and second-order structure of a nonstationary time series, within the locally stationary wavelet modelling framework. We develop a wavelet-based estimator of the second-order structure of the original time series based on the differenced estimate, and show how this can be incorporated into the estimation of the trend of the time series. We perform a simulation study to investigate the performance of the methodology, and demonstrate the utility of the method by analysing data examples from environmental and biomedical science.


翻译:在实际中观测到的多数时间序列显示时间变化趋势(第一顺序)和自动变化(第二顺序)行为。差异是用来消除这种序列趋势的一种常用技术,以便估计(不同序列)时间变化第二顺序结构(不同序列),然而,我们常常要求对原始序列第二顺序行为进行推断,例如在进行趋势估计时。在本条中,我们提出一种方法,利用差异来在地方固定波浪建模框架内,共同估计非静止时间序列的时间变化趋势和第二顺序结构。我们根据差异估计,为最初时间序列的第二顺序结构开发一个基于波盘的估测器,并表明如何将这一方法纳入时间序列趋势的估计中。我们进行模拟研究方法的绩效,并通过分析环境和生物医学的数据实例,展示该方法的效用。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
4+阅读 · 2018年5月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员