Optimization fabrics are a geometric approach to real-time local motion generation, where motions are designed by the composition of several differential equations that exhibit a desired motion behavior. We generalize this framework to dynamic scenarios and non-holonomic robots and prove that fundamental properties can be conserved. We show that convergence to desired trajectories and avoidance of moving obstacles can be guaranteed using simple construction rules of the components. Additionally, we present the first quantitative comparisons between optimization fabrics and model predictive control and show that optimization fabrics can generate similar trajectories with better scalability, and thus, much higher replanning frequency (up to 500 Hz with a 7 degrees of freedom robotic arm). Finally, we present empirical results on several robots, including a non-holonomic mobile manipulator with 10 degrees of freedom and avoidance of a moving human, supporting the theoretical findings.
翻译:优化织物是实时本地运动生成的一种几何方法,其中动议是由若干不同方程式组成的组合设计,这些方程式表现出一种理想的运动行为。我们将这一框架推广到动态情景和非蛋白质机器人,并证明基本属性是可以保护的。我们表明,与理想轨迹的趋同和避免移动障碍可以用部件的简单构建规则来保证。此外,我们展示了优化织物与模型预测控制之间的第一次定量比较,并显示优化织物可以产生类似的轨迹,其可扩展性更高,因此,再规划频率要高得多(最多500赫兹,机臂自由度为7度 )。 最后,我们介绍了数个机器人的经验结果,包括一个拥有10度自由度、避免移动人的非蛋白质移动操纵器,支持理论发现。</s>