Keyphrase generation aims at generating topical phrases from a given text either by copying from the original text (present keyphrases) or by producing new keyphrases (absent keyphrases) that capture the semantic meaning of the text. Encoder-decoder models are most widely used for this task because of their capabilities for absent keyphrase generation. However, there has been little to no analysis on the performance and behavior of such models for keyphrase generation. In this paper, we study various tendencies exhibited by three strong models: T5 (based on a pre-trained transformer), CatSeq-Transformer (a non-pretrained Transformer), and ExHiRD (based on a recurrent neural network). We analyze prediction confidence scores, model calibration, and the effect of token position on keyphrases generation. Moreover, we motivate and propose a novel metric framework, SoftKeyScore, to evaluate the similarity between two sets of keyphrases by using softscores to account for partial matching and semantic similarity. We find that SoftKeyScore is more suitable than the standard F1 metric for evaluating two sets of given keyphrases.


翻译:暂无翻译

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员