Answering complex first-order logic (FOL) queries on knowledge graphs is a fundamental task for multi-hop reasoning. Traditional symbolic methods traverse a complete knowledge graph to extract the answers, which provides good interpretation for each step. Recent neural methods learn geometric embeddings for complex queries. These methods can generalize to incomplete knowledge graphs, but their reasoning process is hard to interpret. In this paper, we propose Graph Neural Network Query Executor (GNN-QE), a neural-symbolic model that enjoys the advantages of both worlds. GNN-QE decomposes a complex FOL query into relation projections and logical operations over fuzzy sets, which provides interpretability for intermediate variables. To reason about the missing links, GNN-QE adapts a graph neural network from knowledge graph completion to execute the relation projections, and models the logical operations with product fuzzy logic. Experiments on 3 datasets show that GNN-QE significantly improves over previous state-of-the-art models in answering FOL queries. Meanwhile, GNN-QE can predict the number of answers without explicit supervision, and provide visualizations for intermediate variables.
翻译:解答关于知识图表的复杂一阶逻辑( FOL) 询问是多重推理的基本任务。 传统的象征性方法可以跳过完整的知识图解解答答案, 这为每个步骤提供了良好的解释。 最近的神经方法可以为复杂的查询学习几何嵌入。 这些方法可以概括为不完整的知识图解, 但其推理过程很难解释 。 在本文中, 我们提出一个具有两个世界优势的神经神经网络查询仪( GNNN- QE ) 模型。 GNN- QE 将复杂的FOL 查询转换为对模糊数据集的关联预测和逻辑操作, 它为中间变量提供了可解释性。 为了解释缺失的链接, GNNN- QE 将一个图形神经网络从知识图完成到执行关系预测, 用产品模糊逻辑模型进行逻辑操作。 在 3个数据集上进行的实验显示, GNNN- QE 在回答 FOL 查询时, 将大大改进以前的状态模型。 同时, GNNNN- QE 可以预测中间变量的数量, 提供清晰的视觉变量。