Near out-of-distribution detection (OOD) is a major challenge for deep neural networks. We demonstrate that large-scale pre-trained transformers can significantly improve the state-of-the-art (SOTA) on a range of near OOD tasks across different data modalities. For instance, on CIFAR-100 vs CIFAR-10 OOD detection, we improve the AUROC from 85% (current SOTA) to more than 96% using Vision Transformers pre-trained on ImageNet-21k. On a challenging genomics OOD detection benchmark, we improve the AUROC from 66% to 77% using transformers and unsupervised pre-training. To further improve performance, we explore the few-shot outlier exposure setting where a few examples from outlier classes may be available; we show that pre-trained transformers are particularly well-suited for outlier exposure, and that the AUROC of OOD detection on CIFAR-100 vs CIFAR-10 can be improved to 98.7% with just 1 image per OOD class, and 99.46% with 10 images per OOD class. For multi-modal image-text pre-trained transformers such as CLIP, we explore a new way of using just the names of outlier classes as a sole source of information without any accompanying images, and show that this outperforms previous SOTA on standard vision OOD benchmark tasks.
翻译:近距离分配检测(OOD)是深神经网络的一大挑战。 我们表明,大型预先培训的变压器可以大大改善不同数据模式中一系列近距离OOD任务的最新工艺(SOTA ) 。 例如,在CIFAR-100诉CIFAR-10 OOD检测中,我们利用在图像网-21k上预先培训的愿景变压器将AUROC从85%(目前SODA)提高到96%以上。在具有挑战性的基因组检测基准中,我们使用变压器和不受监督的预培训前,将AUROC从66%提高到77%。为了进一步提高性能,我们探索了少数点外观外观外观外观的外观暴露;我们表明,预先培训的变压器特别适合外部暴露,在CFAR-100诉CIFAR-10的OO OUROC检测中可提高到98.7%,每个OODAD类只有1个图像,在ODDAD的10个图像中,在ODAD类中,在10个图像上,我们仅用CRODAFIL 的多式图像前的图像展示,作为C-TADAFOR 展示前任何新的图像,我们作为C-TADADAFOR 展示的蓝图展示的蓝图,作为新的图像,作为C-TRAFOR 展示的蓝图,作为新的蓝图展示的升级的升级的升级的升级的蓝图,作为前的蓝图展示,作为新的图像,只是展示的模板,作为新的图像,作为新的图像,作为前的升级的升级的升级的升级的图像,作为新的图像, 。