In this paper, we argue that the unsatisfactory out-of-distribution (OOD) detection performance of neural networks is mainly due to the SoftMax loss anisotropy and propensity to produce low entropy probability distributions in disagreement with the principle of maximum entropy. Current out-of-distribution (OOD) detection approaches usually do not directly fix the SoftMax loss drawbacks, but rather build techniques to circumvent it. Unfortunately, those methods usually produce undesired side effects (e.g., classification accuracy drop, additional hyperparameters, slower inferences, and collecting extra data). In the opposite direction, we propose replacing SoftMax loss with a novel loss function that does not suffer from the mentioned weaknesses. The proposed IsoMax loss is isotropic (exclusively distance-based) and provides high entropy posterior probability distributions. Replacing the SoftMax loss by IsoMax loss requires no model or training changes. Additionally, the models trained with IsoMax loss produce as fast and energy-efficient inferences as those trained using SoftMax loss. Moreover, no classification accuracy drop is observed. The proposed method does not rely on outlier/background data, hyperparameter tuning, temperature calibration, feature extraction, metric learning, adversarial training, ensemble procedures, or generative models. Our experiments showed that IsoMax loss works as a seamless SoftMax loss drop-in replacement that significantly improves neural networks' OOD detection performance. Hence, it may be used as a baseline OOD detection approach to be combined with current or future OOD detection techniques to achieve even higher results.


翻译:在本文中,我们争辩说,神经网络的不尽如人意的分流(OOD)检测性能不尽如人意,这主要是由于SoftMax损失的厌食性能和倾向于产生与最大对流原则不一致的低倍感概率分布。目前的分流(OOD)检测方法通常不会直接修正SoftMax损失退步,而是建立规避技术。不幸的是,这些方法通常会产生不尽人意的副作用(例如,分类精度下降,额外超分量下降,降温速度下降,以及收集额外数据 )。相反,我们建议用新的损失函数取代Softmax损失,但并不因上述缺陷而受到影响。拟议的IsoMax损失是(完全以距离为基础),并且提供高负率的海损分布分布。通过IsoMAx损失的分解(例如分类)的分流率和节能性下降的计算结果,因此,在使用经过训练的精确度测试的 O.

0
下载
关闭预览

相关内容

【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
14+阅读 · 2021年1月31日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2018年2月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关VIP内容
【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
14+阅读 · 2021年1月31日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
5+阅读 · 2018年2月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员