The first part of the paper studies star-cycle factors of graphs. It characterizes star-cycle factors of a graph $G$ and proves upper bounds for the minimum number of $K_{1,2}$-components in a $\{K_{1,1}, K_{1,2}, C_n\colon n\ge 3\}$-factor of a graph $G$. Furthermore, it shows where these components are located with respect to the Gallai-Edmonds decomposition of $G$ and it characterizes the edges which are not contained in any $\{K_{1,1}, K_{1,2}, C_n\colon n\ge 3\}$-factor of $G$. The second part of the paper proves that every edge-chromatic critical graph $G$ has a $\{K_{1,1}, K_{1,2}, C_n\colon n\ge 3\}$-factor, and the number of $K_{1,2}$-components is bounded in terms of its fractional matching number. Furthermore, it shows that for every edge $e$ of $G$, there is a $\{K_{1,1}, K_{1,2}, C_n\colon n\ge 3\}$-factor $F$ with $e \in E(F)$. Consequences of these results for Vizing's critical graph conjectures are discussed.
翻译:纸张的第一部分用于研究图表的星周期系数。 它的特性是GG$G$的星周期系数, 并证明以$$K1, 1, 2}$1, 2}美元成份的最小值上限, 以$K1, 1}, K1, 2}, C\n\ nge 3 $+G$的系数。 此外, 它显示这些成分的位置与Gallai- Edmonds 3 $+G$的分解有关, 它的特性是未包含在$K1, 1}, K1, 2}, C\\ n\\\\ ge 3$G$的边际值。 此外, 文件的第二部分证明, 每一个边缘- 关键值 $G$ 1, K_\\\\\\\ 美元 美元, C_\\\\\ 美元 美元。 它显示, 每个边端的 $1, C_\\\\\\\\\\\\\\\\\ 美元, 美元 美元, 美元 美元, 美元 。