Differentially private data release receives rising attention in machine learning community. Recently, an algorithm called DPMix is proposed to release high-dimensional data after a random mixup of degree $m$ with differential privacy. However, limited theoretical justifications are given about the "sweet spot $m$" phenomenon, and directly applying DPMix to image data suffers from severe loss of utility. In this paper, we revisit random mixup with recent progress on differential privacy. In theory, equipped with Gaussian Differential Privacy with Poisson subsampling, a tight closed form analysis is presented that enables a quantitative characterization of optimal mixup $m^*$ based on linear regression models. In practice, mixup of features, extracted by handcraft or pre-trained neural networks such as self-supervised learning without labels, is adopted to significantly boost the performance with privacy protection. We name it as Differentially Private Feature Mixup (DPFMix). Experiments on MNIST, CIFAR10/100 are conducted to demonstrate its remarkable utility improvement and protection against attacks.


翻译:不同的私人数据发布在机器学习界受到越来越多的关注。 最近, 一种名为 DPMix 的算法提议在随机混杂度为百万美元后释放高维数据。 但是, 对“ sweet spot $m $m” 现象给出了有限的理论理由, 直接将 DPMix 应用于图像数据会严重丧失实用性。 在本文中, 我们重温随机混杂与不同隐私的最新进展。 从理论上讲, 配有高萨差异隐私和Poisson 子取样, 进行了严格的封闭式分析, 从而能够对基于线性回归模型的最佳混杂度进行定量定性。 在实践中, 由手工艺或事先训练过的神经网络( 如无标签的自我监督学习) 提取的功能混杂, 以大大提升隐私保护的性能。 我们将其命名为“ 差异性私人功能混合( DPFMinix) 。 对MNIST( CIFAR10100) 进行实验, 以展示其显著的实用性改进和保护性。

0
下载
关闭预览

相关内容

《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年4月20日
ResT V2: Simpler, Faster and Stronger
Arxiv
0+阅读 · 2022年4月15日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员