We present a probabilistic generative model and an efficient algorithm to both perform community detection and capture reciprocity in networks. Our approach jointly models pairs of edges with exact 2-edge joint distributions. In addition, it provides closed-form analytical expressions for both marginal and conditional distributions. We validate our model on synthetic data in recovering communities, edge prediction tasks, and generating synthetic networks that replicate the reciprocity values observed in real networks. We also highlight these findings on two real datasets that are relevant for social scientists and behavioral ecologists. Our method overcomes the limitations of both standard algorithms and recent models that incorporate reciprocity through a pseudo-likelihood approximation. We provide an open-source implementation of the code online.
翻译:我们提出了一个概率基因模型和高效算法,既可以进行社区检测,也可以在网络中捕捉对等。我们的方法是联合模型,对边缘进行精确的两端联合分布。此外,它为边际和有条件分布提供了封闭式的分析表达方式。我们验证了我们在社区恢复、边际预测任务和生成合成网络方面的合成数据模型,这些模型复制了在真实网络中观测到的对等价值。我们还强调了两个真实数据集的这些结论,这两个数据集与社会科学家和行为生态学家有关。我们的方法克服了标准算法和通过假象近似近似法纳入互惠的近期模型的局限性。我们提供了在线执行代码的公开源头。