In order to precondition Toeplitz systems, we present a new class of simultaneously diagonalizable real matrices, the Gamma-matrices, which include both symmetric circulant matrices and a subclass of the set of all reverse circulant matrices. We define some algorithms for fast computation of the product between a Gamma-matrix and a real vector and between two Gamma-matrices. Moreover, we illustrate a technique of approximating a real symmetric Toeplitz matrix by a Gamma-matrix, and we show that the eigenvalues of the preconditioned matrix are clustered around zero with the exception of at most a finite number of terms.
翻译:为了建立托普利茨系统的先决条件,我们提出了一个新的可同时进行分解的实际矩阵类别,即伽马-矩阵,其中包括对称电流矩阵和一套全部反向电流矩阵的子类。我们定义了在伽马-矩阵与真实矢量之间和两个伽马-矩阵之间快速计算产品的某些算法。此外,我们用伽马-矩阵来说明一种近似真实对称托马利茨矩阵的技术,并且我们表明,先决条件的矩阵的机精值是围绕着零组合的,但最多只有有限的几个条件除外。