In this paper, we study $k$-Way Min-cost Perfect Matching with Delays - the $k$-MPMD problem. This problem considers a metric space with $n$ nodes. Requests arrive at these nodes in an online fashion. The task is to match these requests into sets of exactly $k$, such that the space and time cost of all matched requests are minimized. The notion of the space cost requires a definition of an underlying metric space that gives distances of subsets of $k$ elements. For $k>2$, the task of finding a suitable metric space is at the core of our problem: We show that for some known generalizations to $k=3$ points, such as the $2$-metric and the $D$-metric, there exists no competitive randomized algorithm for the $3$-MPMD problem. The $G$-metrics are defined for 3 points and allows for a competitive algorithm for the $3$-MPMD problem. For $k>3$ points, there exist two generalizations of the $G$-metrics known as $n$- and $K$-metrics. We show that neither the $n$-metrics nor the $K$-metrics can be used for the $k$-MPMD problem. On the positive side, we introduce the $H$-metrics, the first metrics to allow for a solution of the $k$-MPMD problem for all $k$. In order to devise an online algorithm for the $k$-MPMD problem on the $H$-metrics, we embed the $H$-metric into trees with an $O(\log n)$ distortion. Based on this embedding result, we extend the algorithm proposed by Azar et al. (2017) and achieve a competitive ratio of $O(\log n)$ for the $k$-MPMD problem.
翻译:在本文中,我们研究的是美元-美元-美元-美元-MPMD问题。 这个问题涉及到一个用美元- MPMD的公制空间。 请求以在线方式到达这些节点。 任务是将这些请求匹配成一套完全的美元, 从而将所有匹配请求的空间和时间成本最小化。 空间成本概念要求定义一个基本衡量空间, 使子项的距离达到nk美元。 对于 $>2, 寻找一个合适的公制空间是我们问题的核心: 我们表明, 对于一些已知的内基=3美元点, 如2美元和美元- 美元- 度, 要求将这些请求匹配为3美元- 美元。 3美元- 相匹配请求的空间和时间成本成本最小化。 美元- 美元- 美元- 美元- MDMD问题 的竞争性算法。 对于美元- 美元- 美元- 问题, 美元- 美元- 美元- 美元- MDMDR 问题, 以美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 标准- 问题, 我们的正数- 以- 以- 美元- 以- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- RMDMMDMD- 问题