State-space models (SSMs) are often used to model time series data where the observations depend on an unobserved latent process. However, inference on the process parameters of an SSM can be challenging, especially when the likelihood of the data given the parameters is not available in closed-form. We focus on the problem of model fitting within a Bayesian framework, for which existing approaches include Markov chain Monte Carlo (MCMC) using Bayesian data augmentation, sequential Monte Carlo approximation, and particle MCMC algorithms, which combine sequential Monte Carlo approximations and MCMC steps. However, these different methods can be inefficient when sample impoverishment occurs during the sequential Monte Carlo approximation and/or when the MCMC algorithm mixes poorly. We propose the use of deterministic hidden Markov models (HMMs) to provide an efficient MCMC with data augmentation approach, imputing the latent states within the algorithm. Our approach deterministically approximates the SSM by a discrete HMM, which is subsequently used as an MCMC proposal distribution for the latent states in Metropolis-within-Gibbs steps. We demonstrate that the algorithm provides an efficient alternative method for state-space models with near-chaotic behaviour.


翻译:国家空间模型(SSMM)通常用于在观测依赖于未观测到的潜在过程的情况下模拟时间序列数据,然而,对SSM过程参数的推断可能具有挑战性,特别是当无法以封闭形式提供数据时,对SSM过程参数的抽样贫困可能具有挑战性;我们侧重于在巴伊西亚框架内安装模型的问题,在这方面,现有办法包括使用Bayesian数据增强的Markov链 Monte Carlo(MCMC),使用Bayesian数据增强的Markov 链 Monte Carlo(MC ) 和粒子 MMC 算法,这些算法是连续的MConte Carlo近似和MC MC 步骤相结合的;然而,如果在Conte Carlo 相继的近似和/或MC MC 算法混合不良时,这些不同方法可能无效;我们提议使用确定性隐藏的Markov 模型(HMM) 来提供高效的MCMC MC, 以数据增强方法来估计算法中的潜伏状态。我们的方法用离式 HMMMMM(随后用作MC MC建议,在Gibbbbs附近Ms 的M 的隐伏状态中作为MC 的替代性状态分配方法) 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月8日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员