State-space models (SSMs) are often used to model time series data where the observations depend on an unobserved latent process. However, inference on the process parameters of an SSM can be challenging, especially when the likelihood of the data given the parameters is not available in closed-form. We focus on the problem of model fitting within a Bayesian framework, for which existing approaches include Markov chain Monte Carlo (MCMC) using Bayesian data augmentation, sequential Monte Carlo approximation, and particle MCMC algorithms, which combine sequential Monte Carlo approximations and MCMC steps. However, these different methods can be inefficient when sample impoverishment occurs during the sequential Monte Carlo approximation and/or when the MCMC algorithm mixes poorly. We propose the use of deterministic hidden Markov models (HMMs) to provide an efficient MCMC with data augmentation approach, imputing the latent states within the algorithm. Our approach deterministically approximates the SSM by a discrete HMM, which is subsequently used as an MCMC proposal distribution for the latent states in Metropolis-within-Gibbs steps. We demonstrate that the algorithm provides an efficient alternative method for state-space models with near-chaotic behaviour.
翻译:国家空间模型(SSMM)通常用于在观测依赖于未观测到的潜在过程的情况下模拟时间序列数据,然而,对SSM过程参数的推断可能具有挑战性,特别是当无法以封闭形式提供数据时,对SSM过程参数的抽样贫困可能具有挑战性;我们侧重于在巴伊西亚框架内安装模型的问题,在这方面,现有办法包括使用Bayesian数据增强的Markov链 Monte Carlo(MCMC),使用Bayesian数据增强的Markov 链 Monte Carlo(MC ) 和粒子 MMC 算法,这些算法是连续的MConte Carlo近似和MC MC 步骤相结合的;然而,如果在Conte Carlo 相继的近似和/或MC MC 算法混合不良时,这些不同方法可能无效;我们提议使用确定性隐藏的Markov 模型(HMM) 来提供高效的MCMC MC, 以数据增强方法来估计算法中的潜伏状态。我们的方法用离式 HMMMMM(随后用作MC MC建议,在Gibbbbs附近Ms 的M 的隐伏状态中作为MC 的替代性状态分配方法) 。