In recent years, topology optimization has been developed sufficiently and many researchers have concentrated on enhancing to computationally numerical algorithms for computational effectiveness of this method. Along with the development of topology optimization, High Performance Computing (HPC) was marked by a strong dynamic mechanism with a continuous appearance and disappearance of manufacturers, systems, and architectures. Preconditioned conjugate gradient multigrid method (pCGMG) is the most popular in HPC due to its advantage in very large-scale problems. The idea which applies high performance computing to reduce time of running in multi-material topology optimization (MTO) problems with computational time burdens is newly proposed in this article. In multi-material topology optimization procedures, pCGMG is applied for solving linear equation arising from discretization of differential equations. pCGMG is based on mesh size, and then it is powerful to larger scale problems. For the large scale linear static system, minimal compliance-based design is evaluated in this study. This study contributes to a high-performance computing that pCGMG is integrated to an MTO problem, and numerical examples of pCGMG are executed to compare with optimization results in terms of iteration and time-running of different mesh sizes of square wall structure.


翻译:近年来,已经充分发展了地形优化,许多研究人员集中力量加强计算计算方法计算效率的计算数字算法,随着地形优化的发展,高性能计算(HPC)以强有力的动态机制为标志,制造商、系统和建筑不断外观和消失。预先条件的梯度多格法(PCCGMG)由于在非常大规模的问题中具有优势,在高电动中最受欢迎。应用高性能计算来减少多材料性能优化(MTO)问题中计算时间负担计算方法的运行时间的想法是在本篇文章中新提出的。在多物质性能优化程序中,PCGMGMG被用于解决因不同方程式的分离而产生的线性方程式。PCGMG基于网的网状大小,然后它又对更大的规模问题有影响。对于大型的线性静态系统,在本研究中评估了最起码的合规设计。这一研究有助于高性能计算,即PCGGMGM问题与MTO问题融合在一起,而PCGMGMGM的数值示例是用于在不同的时间结构中进行对比。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员