We consider a variant of the best arm identification task in stochastic multi-armed bandits. Motivated by risk-averse decision-making problems, our goal is to identify a set of $m$ arms with the highest $\tau$-quantile values within a fixed budget. We prove asymmetric two-sided concentration inequalities for order statistics and quantiles of random variables that have non-decreasing hazard rate, which may be of independent interest. With these inequalities, we analyse a quantile version of Successive Accepts and Rejects (Q-SAR). We derive an upper bound for the probability of arm misidentification, the first justification of a quantile based algorithm for fixed budget multiple best arms identification. We show illustrative experiments for best arm identification.
翻译:我们考虑的是随机多武装匪徒中最佳武器识别任务的变体。我们受风险偏向决策问题的驱使,我们的目标是在固定预算内确定一套价值最高为$tau$-数量价值的美元武器。我们证明,对于有非下降危险率的随机变数的秩序统计和数种具有非下降危险率的随机变数来说,存在着不对称的双向集中不平等,这或许是独立的兴趣。我们分析了这些不平等,我们分析了“成功接受者和拒绝者”(Q-SAR)的量化版本。我们得出了一个以武器识别误差概率的上限,这是基于量化算法确定固定预算的多个最佳武器识别的第一个理由。我们展示了最佳武器识别的示范性实验。