In this paper, an important discovery has been found for nonconforming immersed finite element (IFE) methods using integral-value degrees of freedom for solving elliptic interface problems. We show that those IFE methods can only achieve suboptimal convergence rates (i.e., $O(h^{1/2})$ in the $H^1$ norm and $O(h)$ in the $L^2$ norm) if the tangential derivative of the exact solution and the jump of the coefficient are not zero on the interface. A nontrivial counter example is also provided to support our theoretical analysis. To recover the optimal convergence rates, we develop a new nonconforming IFE method with additional terms locally on interface edges. The unisolvence of IFE basis functions is proved on arbitrary triangles. Furthermore, we derive the optimal approximation capabilities of both the Crouzeix-Raviart and the rotated-$Q_1$ IFE spaces for interface problems with variable coefficients via a unified approach different from multipoint Taylor expansions. Finally, optimal error estimates in both $H^1$- and $L^2$- norms are proved and confirmed with numerical experiments.
翻译:在本文中,对于使用整体价值自由度解决椭圆界面问题的自由度的不匹配的有限要素(IFE)方法,发现了一个重要的发现。我们表明,这些IFE方法只能达到低于最优化的趋同率(即1美元标准值为O美元1美元,0.2美元标准值为O美元2美元标准值为O美元2美元标准值),如果精确解决方案的正向衍生物和系数跳升在界面上不为零,则发现一个重要的发现。还提供了一个非三维反比实例来支持我们的理论分析。为了恢复最佳趋同率,我们开发了一种新的不兼容的IFE方法,在当地界面边缘附加了条件。IFE的单解函数在任意三角上得到证明。此外,我们从Crouzeix-Ravirat和旋转-1美元IFE空间的优化近似能力中,通过不同于多点泰勒扩张的统一方法处理与可变系数的接口问题。最后,用美元1美元和美元标准值为IFEFE2的优化误差估计数得到证实。