This work provides theoretical foundations for kernel methods in the hyperspherical context. Specifically, we characterise the native spaces (reproducing kernel Hilbert spaces) and the Sobolev spaces associated with kernels defined over hyperspheres. Our results have direct consequences for kernel cubature, determining the rate of convergence of the worst case error, and expanding the applicability of cubature algorithms based on Stein's method. We first introduce a suitable characterisation on Sobolev spaces on the $d$-dimensional hypersphere embedded in $(d+1)$-dimensional Euclidean spaces. Our characterisation is based on the Fourier--Schoenberg sequences associated with a given kernel. Such sequences are hard (if not impossible) to compute analytically on $d$-dimensional spheres, but often feasible over Hilbert spheres. We circumvent this problem by finding a projection operator that allows to Fourier mapping from Hilbert into finite dimensional hyperspheres. We illustrate our findings through some parametric families of kernels.
翻译:这项工作为超球环境下的内核方法提供了理论基础。 具体地说, 我们描述本地空间( 复制内核Hilbert 空间) 和与超球中定义的内核相关的Sobolev空间。 我们的结果直接影响到内核肿瘤, 确定最坏案例误差的趋同率, 并扩大基于Stein方法的幼稚算法的适用性。 我们首先在嵌入$( d+1) 的Euclidean 空间的 $- dize 超光谱空间上, 在Sobolev 空间上引入一个合适的特性。 我们的特性基于与给定内核相关的四级- schoenberg 序列。 这些序列很难( 如果不是不可能的话) 分析$- 维域, 但是通常在Hilbert 区域上是可行的。 我们通过找到一个能够从Hilbert 到 的四级地图绘制到有限维超光谱的预测操作员来回避这个问题。 我们通过某些参数的内核系来说明我们的调查结果 。