With the advancement in 3D scanning technology, there has been a surge of interest in the use of point clouds in science and engineering. To facilitate the computations and analyses of point clouds, prior works have considered parameterizing them onto some simple planar domains with a fixed boundary shape such as a unit circle or a rectangle. However, the geometry of the fixed shape may lead to some undesirable distortion in the parameterization. It is therefore more natural to consider free-boundary conformal parameterizations of point clouds, which minimize the local geometric distortion of the mapping without constraining the overall shape. In this work, we propose a novel approximation scheme of the Laplace--Beltrami operator on point clouds and utilize it for developing a free-boundary conformal parameterization method for disk-type point clouds. With the aid of the free-boundary conformal parameterization, high-quality point cloud meshing can be easily achieved. Furthermore, we show that using the idea of conformal welding in complex analysis, the point cloud conformal parameterization can be computed in a divide-and-conquer manner. Experimental results are presented to demonstrate the effectiveness of the proposed method.


翻译:随着3D扫描技术的进步,在科学和工程学中对点云的使用表现出了浓厚的兴趣。为了便于计算和分析点云,先前的工程已考虑将点云参数参数化为某些带有固定边界形状的简单平面域,如单位圆或矩形。但是,固定形状的几何学可能导致参数化的某些不可取的扭曲。因此,考虑点云的自由边界一致参数化比较自然,从而将绘图的局部几何扭曲减少到最低程度,同时又不限制整体形状。在这项工作中,我们提议了点云上的拉帕-贝特拉米操作员的新型近似方案,并利用它为磁盘型圆云开发一种自由边界一致参数化方法。在自由边界一致参数化的帮助下,可以很容易地实现高质量的点云网状。此外,我们表明,利用在复杂分析中进行相合焊化的理念,点云的一致参数化可以用分解法的方式进行计算。实验结果将展示拟议方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员