We draw on the latest advancements in the physics community to propose a novel method for discovering the governing non-linear dynamics of physical systems in reinforcement learning (RL). We establish that this method is capable of discovering the underlying dynamics using significantly fewer trajectories (as little as one rollout with $\leq 30$ time steps) than state of the art model learning algorithms. Further, the technique learns a model that is accurate enough to induce near-optimal policies given significantly fewer trajectories than those required by model-free algorithms. It brings the benefits of model-based RL without requiring a model to be developed in advance, for systems that have physics-based dynamics. To establish the validity and applicability of this algorithm, we conduct experiments on four classic control tasks. We found that an optimal policy trained on the discovered dynamics of the underlying system can generalize well. Further, the learned policy performs well when deployed on the actual physical system, thus bridging the model to real system gap. We further compare our method to state-of-the-art model-based and model-free approaches, and show that our method requires fewer trajectories sampled on the true physical system compared other methods. Additionally, we explored approximate dynamics models and found that they also can perform well.


翻译:我们利用物理学界的最新进展,提出一种新的方法,以发现强化学习中物理系统的非线性动态(RL)的治理性非线性动态。我们确定,这种方法能够利用远小于艺术模型学习算法状态的轨迹(仅次于一个推出30美元30美元的时间步骤)来发现基本动态。此外,该技术学习了一种模型,该模型的准确性足以引导接近最佳的政策,其轨迹大大低于无模型算法所要求的轨迹。它带来了基于模型的RL的好处,而无需事先为具有物理动态的系统开发一个模型。为确定这种算法的有效性和适用性,我们进行了四项典型的控制任务实验。我们发现,根据所发现的基本系统动态动态状态而培训的最佳政策可以非常概括。此外,在实际物理系统上安装时,所学的政策效果良好,从而将模型与实际系统差距相连接起来。我们进一步比较了基于模型的RL的RL方法,而无需为基于物理动态动态动态的模型,并显示我们所找到的模型需要的更低的物理模型,我们所探索的其他系统也能够进行更精确的模型。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
66+阅读 · 2022年4月13日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员