Devising and analyzing learning models for spatiotemporal network data is of importance for tasks including forecasting, anomaly detection, and multi-agent coordination, among others. Graph Convolutional Neural Networks (GCNNs) are an established approach to learn from time-invariant network data. The graph convolution operation offers a principled approach to aggregate multiresolution information. However, extending the convolution principled learning and respective analysis to the spatiotemporal domain is challenging because spatiotemporal data have more intrinsic dependencies. Hence, a higher flexibility to capture jointly the spatial and the temporal dependencies is required to learn meaningful higher-order representations. Here, we leverage product graphs to represent the spatiotemporal dependencies in the data and introduce Graph-Time Convolutional Neural Networks (GTCNNs) as a principled architecture to aid learning. The proposed approach can work with any type of product graph and we also introduce a parametric product graph to learn also the spatiotemporal coupling. The convolution principle further allows a similar mathematical tractability as for GCNNs. In particular, the stability result shows GTCNNs are stable to spatial perturbations but there is an implicit trade-off between discriminability and robustness; i.e., the more complex the model, the less stable. Extensive numerical results on benchmark datasets corroborate our findings and show the GTCNN compares favorably with state-of-the-art solutions. We anticipate the GTCNN to be a starting point for more sophisticated models that achieve good performance but are also fundamentally grounded.


翻译:设计和分析时空网络数据学习模型对于预测、异常探测和多试剂协调等任务非常重要。 图表进化神经网络( GANNs) 是学习时空网络数据的既定方法。 图形进化操作为集成多分辨率信息提供了一个原则性方法。 但是, 将集成原则性学习和各自分析扩展至时空领域具有挑战性, 因为空洞数据具有更内在的相互依存性。 因此, 要学习有意义的较高级表示, 就需要更灵活地共同捕捉空间和时间依赖性。 此处, 我们利用产品图表来代表数据中的时空依赖性, 并采用数字进化网络( GNNURs), 作为一种原则性架构来帮助学习。 拟议的方法可以与任何类型的产品图表一起工作, 我们还引入一个参数化产品图表, 来学习时空互换解决方案。 进化原则进一步允许与GCNTCs具有相似的数学分流性。 特别是, 稳定性结果显示GTC的精确性、 稳定性与稳定性数据比更低。

7
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
20+阅读 · 2021年2月28日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员