Battery aging is one of the major concerns for the pervasive devices such as smartphones, wearables and laptops. Current battery aging mitigation approaches only partially leverage the available options to prolong battery lifetime. In this regard, we claim that wireless crowd charging via network-wide smart charging protocols can provide a useful setting for applying battery aging mitigation. In this paper, for the first time in the state-of-the-art, we couple the two concepts and we design a fine-grained battery aging model in the context of wireless crowd charging, and two network-wide protocols to mitigate battery aging. Our approach directly challenges the related contemporary research paradigms by (i) taking into account important characteristic phenomena in the algorithmic modeling process related to fine-grained battery aging properties, (ii) deploying ubiquitous computing and network-wide protocols for battery aging mitigation, and (iii) fulfilling the user QoE expectations with respect to the enjoyment of a longer battery lifetime. Simulation-based results indicate that the proposed protocols are able to mitigate battery aging quickly in terms of nearly 46.74-60.87% less reduction of battery capacity among the crowd, and partially outperform state-of-the-art protocols in terms of energy balance quality.
翻译:电池老化是智能手机、磨损器和膝上型计算机等普遍装置的主要关切之一。当前电池老化减缓方法只是部分地利用可用选项延长电池寿命。在这方面,我们声称,通过全网络智能充电协议进行的无线人群充电可以为应用电池老化减缓提供有用的环境。在本文中,我们首次将这两个概念结合起来,并在无线人群充电和两个全网络协议的背景下设计一个微粒电池老化模型,以减轻电池老化。我们的方法直接挑战相关的当代研究模式,方法是:(一) 考虑到与微粒电池老化特性有关的算法模型进程中的重要特征现象,(二) 部署易变形计算和全网络协议来减缓电池老化,(三) 实现用户对延长电池使用寿命的期望。模拟结果表明,拟议协议能够以近46.74-60这样的条件迅速缓解电池老化。 187%的电池质量条件在人群中降低了比例。