For decades, best subset selection (BSS) has eluded statisticians mainly due to its computational bottleneck. However, until recently, modern computational breakthroughs have rekindled theoretical interest in BSS and have led to new findings. Recently, Guo et al. (2020) showed that the model selection performance of BSS is governed by a margin quantity that is robust to the design dependence, unlike modern methods such as LASSO, SCAD, MCP, etc. Motivated by their theoretical results, in this paper, we also study the variable selection properties of best subset selection for high-dimensional sparse linear regression setup. We show that apart from the identifiability margin, the following two complexity measures play a fundamental role in characterizing the margin condition for model consistency: (a) complexity of residualized features, (b) complexity of spurious projections. In particular, we establish a simple margin condition that only depends only on the identifiability margin quantity and the dominating one of the two complexity measures. Furthermore, we show that a similar margin condition depending on similar margin quantity and complexity measures is also necessary for model consistency of BSS. For a broader understanding of the complexity measures, we also consider some simple illustrative examples to demonstrate the variation in the complexity measures which broadens our theoretical understanding of the model selection performance of BSS under different correlation structures.


翻译:几十年来,最佳子集选择(BSS)主要由于计算瓶颈,使统计人员无法进行最佳子集选择(BSS),然而,直到最近,现代计算上的突破重新激发了对BSS的理论兴趣,并导致新的发现。最近,Guo等人(202020年)指出,BSS的模型选择性能受与设计依赖性相当的差值的制约,不同于LASSO、SCAD、MCP等现代方法。本文还研究了高维稀薄线性线性回归设置最佳子集选择的可变性。我们表明,除了识别性差值外,以下两种复杂度措施在确定模型一致性差值条件的特征方面起着根本作用:(a) 残余性特征的复杂性,(b) 虚假预测的复杂性。特别是,我们确立了一个简单的差值条件,仅取决于其可辨性差值比值数量和两种复杂措施之一。此外,我们表明,根据类似差值和复杂度计量措施的类似差值的差值条件,对于BSS的模型一致性也十分必要。为了BSS的示范性一致性,我们从更广义的角度理解了一种解释性结构结构。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
33+阅读 · 2021年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员