This paper proposes an algorithm named as PrTransH to learn embedding vectors from real world EMR data based medical knowledge. The unique challenge in embedding medical knowledge graph from real world EMR data is that the uncertainty of knowledge triplets blurs the border between "correct triplet" and "wrong triplet", changing the fundamental assumption of many existing algorithms. To address the challenge, some enhancements are made to existing TransH algorithm, including: 1) involve probability of medical knowledge triplet into training objective; 2) replace the margin-based ranking loss with unified loss calculation considering both valid and corrupted triplets; 3) augment training data set with medical background knowledge. Verifications on real world EMR data based medical knowledge graph prove that PrTransH outperforms TransH in link prediction task. To the best of our survey, this paper is the first one to learn and verify knowledge embedding on probabilistic knowledge graphs.


翻译:本文建议使用名为 PrTransH 的算法,从真实世界的EMR数据医学知识中学习嵌入矢量。 嵌入真实世界的EMR数据中医学知识图表的独特挑战是,知识三重的不确定性模糊了“ 正确的三重” 和“ 错误的三重” 之间的界限,改变了许多现有算法的基本假设。为了应对这一挑战,对现有TransH 算法作了一些改进,包括:1) 涉及医学知识三重的概率,以培训目标为三重;2) 以统一的损失计算取代基于边际的排名损失,同时考虑到有效和腐败的三重;3) 增加具有医学背景知识的培训数据集。对真实世界的EMR数据基于医学知识图的核查证明,PRtransH在链接的预测任务中超越了TransH。对我们的调查的最佳评估是,本文件是第一个学习和核实将知识嵌入概率知识图中的知识。

1
下载
关闭预览

相关内容

TransH: 将知识嵌入到超平面(Knowledge graph embedding by translating on hyperplanes),将实体和关系嵌入到同一的向量空间,但实体在不同关系中有不同的表示。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Github项目推荐 | 知识图谱文献集合
AI研习社
26+阅读 · 2019年4月12日
【荟萃】知识图谱论文与笔记
专知
71+阅读 · 2019年3月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
论文浅尝 | Leveraging Knowledge Bases in LSTMs
开放知识图谱
6+阅读 · 2017年12月8日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Arxiv
102+阅读 · 2020年3月4日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
20+阅读 · 2019年9月7日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Github项目推荐 | 知识图谱文献集合
AI研习社
26+阅读 · 2019年4月12日
【荟萃】知识图谱论文与笔记
专知
71+阅读 · 2019年3月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
论文浅尝 | Leveraging Knowledge Bases in LSTMs
开放知识图谱
6+阅读 · 2017年12月8日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
相关论文
Arxiv
102+阅读 · 2020年3月4日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
20+阅读 · 2019年9月7日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
7+阅读 · 2018年3月21日
Top
微信扫码咨询专知VIP会员