We propose a new class of goodness-of-fit tests for the logistic distribution based on a characterisation related to the density approach in the context of Stein's method. This characterisation based test is a first of its kind for the logistic distribution. The asymptotic null distribution of the test statistic is derived and it is shown that the test is consistent against fixed alternatives. The finite sample power performance of the newly proposed class of tests is compared to various existing tests by means of a Monte Carlo study. It is found that this new class of tests are especially powerful when the alternative distributions are heavy tailed, like Student's t and Cauchy, or for skew alternatives such as the log-normal, gamma and chi-square distributions.


翻译:我们根据斯坦因方法中密度方法的特征,建议对后勤分配进行新的标准测试。这种基于特征的测试是后勤分配的同类测试中的第一个。测试统计数字的无症状分布是推断出来的,并表明测试与固定的替代品是一致的。新提议的测试类别的有限抽样功率表现通过蒙特卡洛研究与现有的各种测试进行比较。发现当替代的分布(如学生的T和Cauchy)尾巴严重尾巴时,或者对于日志正常、伽马和奇夸尔分布等偏差的替代品而言,这种新的测试类别特别强大。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【文献综述】深度学习目标检测方法及其主流框架综述
专知会员服务
119+阅读 · 2020年6月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Minimal Supervision for Morphological Inflection
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月10日
Arxiv
0+阅读 · 2021年10月9日
Arxiv
7+阅读 · 2019年6月20日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【文献综述】深度学习目标检测方法及其主流框架综述
专知会员服务
119+阅读 · 2020年6月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Minimal Supervision for Morphological Inflection
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月10日
Arxiv
0+阅读 · 2021年10月9日
Arxiv
7+阅读 · 2019年6月20日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Top
微信扫码咨询专知VIP会员