Ordinary differential equations (ODEs) are widely used to model complex dynamics that arises in biology, chemistry, engineering, finance, physics, etc. Calibration of a complicated ODE system using noisy data is generally very difficult. In this work, we propose a two-stage nonparametric approach to address this problem. We first extract the de-noised data and their higher order derivatives using boundary kernel method, and then feed them into a sparsely connected deep neural network with ReLU activation function. Our method is able to recover the ODE system without being subject to the curse of dimensionality and complicated ODE structure. When the ODE possesses a general modular structure, with each modular component involving only a few input variables, and the network architecture is properly chosen, our method is proven to be consistent. Theoretical properties are corroborated by an extensive simulation study that demonstrates the validity and effectiveness of the proposed method. Finally, we use our method to simultaneously characterize the growth rate of Covid-19 infection cases from 50 states of the USA.
翻译:普通差异方程式(ODEs)被广泛用于模拟生物、化学、工程、金融、物理等中产生的复杂动态。使用噪音数据对复杂的ODE系统进行校准通常非常困难。在这项工作中,我们建议采用两阶段的无参数方法来解决这个问题。我们首先利用边界内核方法提取去名数据及其更高顺序的衍生物,然后用RELU激活功能将其输入一个连接不广的深神经网络。我们的方法可以恢复ODE系统,而不受维度和复杂的ODE结构的诅咒。当ODE拥有一个通用模块结构,每个模块组件只包含少量输入变量,而且网络结构被正确选择时,我们的方法就证明是一致的。通过广泛的模拟研究来证实理论属性,该研究证明了拟议方法的有效性和有效性。最后,我们用我们的方法同时描述美国50个州的Covid-19感染病例的生长率。