The ATLAS experiment measures the properties of particles that are products of proton-proton collisions at the LHC. The ATLAS detector will undergo a major upgrade before the high luminosity phase of the LHC. The ATLAS liquid argon calorimeter measures the energy of particles interacting electromagnetically in the detector. The readout electronics of this calorimeter will be replaced during the aforementioned ATLAS upgrade. The new electronic boards will be based on state-of-the-art field-programmable gate arrays (FPGA) from Intel allowing the implementation of neural networks embedded in firmware. Neural networks have been shown to outperform the current optimal filtering algorithms used to compute the energy deposited in the calorimeter. This article presents the implementation of a recurrent neural network (RNN) allowing the reconstruction of the energy deposited in the calorimeter on Stratix 10 FPGAs. The implementation in high level synthesis (HLS) language allowed fast prototyping but fell short of meeting the stringent requirements in terms of resource usage and latency. Further optimisations in Very High-Speed Integrated Circuit Hardware Description Language (VHDL) allowed fulfilment of the requirements of processing 384 channels per FPGA with a latency smaller than 125 ns.
翻译:ATLAS 实验将测试LHC 质质-质-质-质-碰撞产物的粒子特性。 ATLAS 探测器将在LHC 高光度阶段之前进行重大升级。 ATLAS 液体光度热量计测量探测器中粒子进行电磁相互作用的能量。 在上述ATLAS 升级期间,将更换该卡路里计的读出电子设备。 新的电子板将基于Intel 的最新现场可设计门阵列(FPGA), 允许安装嵌入固态软件的神经网络。 神经网络已经显示, 超过了目前用于计算卡洛里计中沉积能量的最佳过滤算法。 本条介绍了一个经常性的神经网(RNNN), 允许重建位于Stratlatix 10 FPGAs 上的卡洛里计中的能量。 高水平合成语言的实施允许快速推进,但没有达到资源使用和固定状态方面的严格要求。 智能网络网络已显示超越了目前用于高分辨率处理的硬度- 。