In this paper, I give a concise introduction to a generic theoretical framework termed Bayesian Dynamic Ensemble of Multiple Models (BDEMM) that is used for robust sequential online prediction. This framework has three major features: (1) it employs a model pool, rather than a single model, to capture possible statistical regularities underlying the data; (2) the model pool consists of multiple weighted candidate models, wherein the model weights are adapted online to capture possible temporal evolutions of the data; (3) the adaptation for the model weights follows Bayesian formalism. These features together define BDEMM. To make this introduction comprehensive, I describe BDEMM from four perspectives, namely the related theories, the different forms of its algorithmic implementations, its classical applications, related open resources, followed by a discussion of open problems that are worth further research.
翻译:在本文中,我简要地介绍了一个通用理论框架,称为Bayesian动态多模型组合(BDEMMM),用于强有力的连续在线预测,这一框架有三个主要特征:(1) 它使用一个模型库,而不是单一模型,以了解数据背后可能存在的统计规律;(2) 模型集合由多个加权候选模型组成,模型加权数在网上调整,以了解数据可能发生的时间变化;(3) 模型加权数的调整遵循Bayesian形式主义,这些特征共同定义了BDEMM。为了使这一介绍具有全面性,我从四个角度对BDEMM作了描述,即相关理论、其算法实施的不同形式、其传统应用、相关的开放资源,然后讨论了值得进一步研究的公开问题。