We present methods for causally interpretable meta-analyses that combine information from multiple randomized trials to estimate potential (counterfactual) outcome means and average treatment effects in a target population. We consider identifiability conditions, derive implications of the conditions for the law of the observed data, and obtain identification results for transporting causal inferences from a collection of independent randomized trials to a new target population in which experimental data may not be available. We propose an estimator for the potential (counterfactual) outcome mean in the target population under each treatment studied in the trials. The estimator uses covariate, treatment, and outcome data from the collection of trials, but only covariate data from the target population sample. We show that it is doubly robust, in the sense that it is consistent and asymptotically normal when at least one of the models it relies on is correctly specified. We study the finite sample properties of the estimator in simulation studies and demonstrate its implementation using data from a multi-center randomized trial.
翻译:我们提出可以因果解释的元分析方法,将来自多个随机试验的信息综合起来,估计潜在(反事实)结果手段和对目标人群的平均治疗效果。我们考虑可识别性条件,从观察数据的法律条件中产生影响,并获取将因果推断从独立随机试验收集到可能无法获得实验数据的新目标人群的分类结果的识别结果。我们建议对试验所研究的每一种治疗对象中潜在(相对事实)结果的平均值进行估计。估计者使用收集试验的变量、治疗和结果数据,但只使用来自目标人群样本的变量数据。我们表明,它具有双重性,即当它所依赖的模型中至少有一种得到正确说明时,它具有一致性和偶然性常态性。我们在模拟研究中研究估计者有限的抽样特性,并利用多中心随机试验的数据来证明其执行情况。