Many scientific phenomena are studied using computer experiments consisting of multiple runs of a computer model while varying the input settings. Gaussian processes (GPs) are a popular tool for the analysis of computer experiments, enabling interpolation between input settings, but direct GP inference is computationally infeasible for large datasets. We adapt and extend a powerful class of GP methods from spatial statistics to enable the scalable analysis and emulation of large computer experiments. Specifically, we apply Vecchia's ordered conditional approximation in a transformed input space, with each input scaled according to how strongly it relates to the computer-model response. The scaling is learned from the data, by estimating parameters in the GP covariance function using Fisher scoring. Our methods are highly scalable, enabling estimation, joint prediction and simulation in near-linear time in the number of model runs. In several numerical examples, our approach substantially outperformed existing methods.
翻译:许多科学现象都是利用计算机模型的多重运行和输入设置不同的计算机实验来研究的。 Gaussian 过程( GPs) 是分析计算机实验的常用工具, 使得输入环境之间能够进行内插, 但直接的 GP 推断在计算上对大型数据集是行不通的。 我们从空间统计中调整和扩展了强大的GP方法类别, 以便能够对大型计算机实验进行可缩放分析和模拟。 具体地说, 我们用Vecchia 的定购有条件近似, 在一个转换输入空间中应用, 每种输入都根据它与计算机模型反应的强烈关联程度按比例进行缩放。 通过利用Fisheral评分估算GP 共变函数中的参数, 从数据中学习了比例的缩放。 我们的方法在模型运行的近线时间里是高度可缩放的, 能够估计, 联合预测和模拟。 在几个数字实例中, 我们的方法大大超过现有方法。