In this paper, we study the problem of user activity detection and large-scale fading coefficient estimation in a random access wireless uplink with a massive MIMO base station with a large number $M$ of antennas and a large number of wireless single-antenna devices (users). We consider a block fading channel model where the $M$-dimensional channel vector of each user remains constant over a coherence block containing $L$ signal dimensions in time-frequency. In the considered setting, the number of potential users $K_\text{tot}$ is much larger than $L$ but at each time slot only $K_a<<K_\text{tot}$ of them are active. Previous results, based on compressed sensing, require that $K_a\leq L$, which is a bottleneck in massive deployment scenarios such as Internet-of-Things and unsourced random access. In this work we show that such limitation can be overcome when the number of base station antennas $M$ is sufficiently large. We also provide two algorithms. One is based on Non-Negative Least-Squares, for which the above scaling result can be rigorously proved. The other consists of a low-complexity iterative componentwise minimization of the likelihood function of the underlying problem. Finally, we use the discussed approximated ML algorithm as the decoder for the inner code in a concatenated coding scheme for unsourced random access, a grant-free uncoordinated multiple access scheme where all users make use of the same codebook, and the massive MIMO base station must come up with the list of transmitted messages irrespectively of the identity of the transmitters. We show that reliable communication is possible at any $E_b/N_0$ provided that a sufficiently large number of base station antennas is used, and that a sum spectral efficiency in the order of $\mathcal{O}(L\log(L))$ is achievable.


翻译:在本文中, 我们研究用户活动检测和大规模下降系数估算的问题, 在一个随机访问的无线链接中, 与大型的 mIMO 基地站的无线连接中, 有大量的天线和大量的无线单ANENNA 设备( 用户) 。 我们考虑一个块式淡化频道模型, 每个用户的$M美元维通道矢量在包含时频信号维度的一致块中保持恒定。 在考虑的设置中, 潜在用户数量( $K++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
专知会员服务
15+阅读 · 2021年5月21日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
9+阅读 · 2017年10月17日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
9+阅读 · 2017年10月17日
Top
微信扫码咨询专知VIP会员