We define a notion of "non-backtracking" matrix associated to any symmetric matrix, and we prove a "Ihara-Bass" type formula for it. Previously, these notions were known only for symmetric 0/1 matrices. We use this theory to prove new results on polynomial-time strong refutations of random constraint satisfaction problems with $k$ variables per constraints (k-CSPs). For a random k-CSP instance constructed out of a constraint that is satisfied by a $p$ fraction of assignments, if the instance contains $n$ variables and $n^{k/2} / \epsilon^2$ constraints, we can efficiently compute a certificate that the optimum satisfies at most a $p+O_k(\epsilon)$ fraction of constraints. Previously, this was known for even $k$, but for odd $k$ one needed $n^{k/2} (\log n)^{O(1)} / \epsilon^2$ random constraints to achieve the same conclusion. Although the improvement is only polylogarithmic, it overcomes a significant barrier to these types of results. Strong refutation results based on current approaches construct a certificate that a certain matrix associated to the k-CSP instance is quasirandom. Such certificate can come from a Feige-Ofek type argument, from an application of Grothendieck's inequality, or from a spectral bound obtained with a trace argument. The first two approaches require a union bound that cannot work when the number of constraints is $o(n^{\lceil k/2 \rceil})$ and the third one cannot work when the number of constraints is $o(n^{k/2} \sqrt{\log n})$.
翻译:我们定义了一个与任何对称矩阵相关的“ 不背背跟踪” 矩阵概念, 并且我们证明这是一个“ Ihara- Bass ” 的公式。 以前, 这些概念只为对称 0/1 矩阵而已知。 我们使用这个理论来证明多球- 时间强烈反驳随机约束满意度问题的新结果, 每种制约( k- CSP ) 的变量为美元。 对于随机 k- CSP 实例, 其构建的制约是按 $( k- CSP ) 的比例计算, 且该选项包含 $( $- k/2 美元) 和 $( $) / epsilon/2 / / epsilon/2 的公式。 我们可以用这个理论来证明一个证书, 最优化满足$( O_ k_ k ( epslon) ) 约束部分。 对于奇特的 美元, 需要 $( $ ) 美元 (\ ) (\ log n) {O} ( ) / livern =2 room 限制 来得出同一结论。 虽然该参数的参数的参数的改进只是 。 当 rlogarqrationaltic ral ral ral ral rus rus r) rus ral rus rus rus rus rus rus rus rus rus rus rx ral rus 。