Falsification is the basis for testing existing hypotheses, and a great danger is posed when results incorrectly reject our prior notions (false positives). Though nonparametric and nonlinear exploratory methods of uncovering coupling provide a flexible framework to study network configurations and discover causal graphs, multiple comparisons analyses make false positives more likely, exacerbating the need for their control. We aim to robustify the Gaussian Processes Convergent Cross-Mapping (GP-CCM) method through Variational Bayesian Gaussian Process modeling (VGP-CCM). We alleviate computational costs of integrating with conditional hyperparameter distributions through mean field approximations. This approximation model, in conjunction with permutation sampling of the null distribution, permits significance statistics that are more robust than permutation sampling with point hyperparameters. Simulated unidirectional Lorenz-Rossler systems as well as mechanistic models of neurovascular systems are used to evaluate the method. The results demonstrate that the proposed method yields improved specificity, showing promise to combat false positives


翻译:伪造是检验现有假设的基础,当结果错误地否定我们先前的概念(假正数)时,就会构成巨大的危险。 尽管非参数和非线性探索性发现混合方法为研究网络配置和发现因果关系图提供了一个灵活的框架,但多重比较分析使得假正数更有可能成为假正数,从而加重了对其控制的需要。我们的目标是通过Varicational Bayesian Gaussian Gaussian进程模型(VGP-CCM)来强化高斯进程(GP-CCM)方法。我们通过平均实地近似法来降低与有条件超光谱分布相结合的计算成本。这一近似模型结合了对空分布的调整抽样,使得比定点超光度取样更可靠的重要统计数据。我们使用模拟单向Lorenz-Rossler系统以及神经血管系统的机械模型来评估这一方法。结果显示,拟议方法提高了特性,显示了打击假正数的承诺。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月21日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员