Based on the linearity of quantum unitary operations, we propose a method that runs the parameterized quantum circuits before encoding the input data. It enables a dataset owner to train machine learning models on quantum cloud computation platforms, without the risk of leaking the information of the data. It is also capable of encoding a huge number of data effectively at a later time using classical computations, thus saving the runtime on quantum computation devices. The trained quantum machine learning model can be run completely on classical computers, so that the dataset owner does not need to have any quantum hardware, nor even quantum simulators. Moreover, the method can mitigate the encoding bottom neck by reducing the required circuit depth from $O(2^{n})$ to $n/2$. These results manifest yet another advantage of quantum and quantum-inspired machine learning models over existing classical neural networks, and broaden the approaches for data security.
翻译:暂无翻译