Representing words by vectors, or embeddings, enables computational reasoning and is foundational to automating natural language tasks. For example, if word embeddings of similar words contain similar values, word similarity can be readily assessed, whereas judging that from their spelling is often impossible (e.g. cat /feline) and to predetermine and store similarities between all words is prohibitively time-consuming, memory intensive and subjective. We focus on word embeddings learned from text corpora and knowledge graphs. Several well-known algorithms learn word embeddings from text on an unsupervised basis by learning to predict those words that occur around each word, e.g. word2vec and GloVe. Parameters of such word embeddings are known to reflect word co-occurrence statistics, but how they capture semantic meaning has been unclear. Knowledge graph representation models learn representations both of entities (words, people, places, etc.) and relations between them, typically by training a model to predict known facts in a supervised manner. Despite steady improvements in fact prediction accuracy, little is understood of the latent structure that enables this. The limited understanding of how latent semantic structure is encoded in the geometry of word embeddings and knowledge graph representations makes a principled means of improving their performance, reliability or interpretability unclear. To address this: 1. we theoretically justify the empirical observation that particular geometric relationships between word embeddings learned by algorithms such as word2vec and GloVe correspond to semantic relations between words; and 2. we extend this correspondence between semantics and geometry to the entities and relations of knowledge graphs, providing a model for the latent structure of knowledge graph representation linked to that of word embeddings.


翻译:以矢量或嵌入方式代表单词,可以进行计算推理,并且是自然语言任务自动化的基础。例如,如果类似单词的字嵌入包含类似的值,则可以很容易地评估词相似性,而判断其拼写往往不可能(例如猫/猫线),预先确定和储存所有单词之间的相似性则过于耗时、记忆密集和主观。我们侧重于从文本公司和知识图表中学习的字嵌入。一些著名的算法在不监督的基础上从文本中学习字嵌入。一些著名的算法通过学习预测每个单词周围的字嵌入,例如Word2vec和GloVe。从这些词嵌入的参数可以很容易地评估,以反映单词共值统计数据,但是它们如何捕捉到词义含义的含义是模糊的。 知识图形代表模型既学习实体(词、人、地点等),也学习它们之间的关系,通常通过训练一个模型来以监督的方式预测已知的事实。尽管在事实模型中不断改进准确性,但对于这些字嵌入的字面关系很少理解其直系关系,也就是结构结构结构结构结构结构中我们如何理解,从而了解如何理解其精确结构的精确解释。

8
下载
关闭预览

相关内容

分散式表示即将语言表示为稠密、低维、连续的向量。 研究者最早发现学习得到词嵌入之间存在类比关系。比如apple−apples ≈ car−cars, man−woman ≈ king – queen 等。这些方法都可以直接在大规模无标注语料上进行训练。词嵌入的质量也非常依赖于上下文窗口大小的选择。通常大的上下文窗口学到的词嵌入更反映主题信息,而小的上下文窗口学到的词嵌入更反映词的功能和上下文语义信息。
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
13+阅读 · 2019年11月14日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员