Accelerated gradient methods are a powerful optimization tool in machine learning and statistics but their development has traditionally been driven by heuristic motivations. Recent research, however, has demonstrated that these methods can be derived as discretizations of dynamical systems, which in turn has provided a basis for more systematic investigations, especially into the structure of those dynamical systems and their structure-preserving discretizations. In this work we introduce dynamical systems defined through a contact geometry which are not only naturally suited to the optimization goal but also subsume all previous methods based on geometric dynamical systems. These contact dynamical systems also admit a natural, robust discretization through geometric contact integrators. We illustrate these features in paradigmatic examples which show that we can indeed obtain optimization algorithms that achieve oracle lower bounds on convergence rates while also improving on previous proposals in terms of stability.


翻译:加速梯度方法在机器学习和统计方面是一个强大的优化工具,但其发展传统上是由超自然动机驱动的。然而,最近的研究表明,这些方法可以作为动态系统的分解而产生,这反过来又为更系统的调查提供了基础,特别是对这些动态系统的结构及其结构保持的分化。在这项工作中,我们引入了通过接触几何界定的动态系统,这些系统不仅自然适合优化目标,而且还包含所有先前基于几何动态系统的方法。这些接触动态系统也通过几何接触集成器接受一种自然的、稳健的分解。我们用典型的例子来说明这些特征,这些特征表明我们确实可以得到优化的算法,在趋同率上达到或达到较低的界限,同时在稳定方面改进先前的建议。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
53+阅读 · 2020年3月16日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
6+阅读 · 2021年6月24日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员