The early development of a zygote can be mathematically described by a developmental tree. To compare developmental trees of different species, we need to define distances on trees. If children cells after a division are not distinguishable, developmental trees are represented by the space $\mathcal{T}$ of rooted trees with possibly repeated labels, where all vertices are unordered. If children cells after a division are partially distinguishable, developmental trees are represented by the space $\mathcal{P}$ of rooted trees with possibly repeated labels, where vertices can be ordered or unordered. On $\mathcal{T}$, the space of rooted unordered trees with possibly repeated labels, we define two metrics: the best-match metric and the left-regular metric, which show some advantages over existing methods. On $\mathcal{P}$, the space of rooted labeled trees with ordered or unordered vertices, there is no metric, and we define a semimetric, which is a variant of the best-match metric. To compute the best-match distance between two trees, the expected time complexity and worst-case time complexity are both $\mathcal{O}(n^2)$, where $n$ is the tree size. To compute the left-regular distance between two trees, the expected time complexity is $\mathcal{O}(n)$, and the worst-case time complexity is $\mathcal{O}(n\log n)$. For rooted labeled trees with (fully/partially) unordered vertices, we define metrics (semimetric) that have fast algorithms to compute and have advantages over existing methods. Such trees also appear outside of developmental biology, and such metrics can be applied to other types of trees which have more extensive applications, especially in molecular biology.
翻译:zygote 早期的开发可以用开发树进行数学描述 。 为了比较不同物种的发育树 。 为了比较不同物种的发育树, 我们需要定义树上的距离 。 如果分区后的儿童细胞无法辨别, 树的发育树代表的面积为 $\ mathcal{ T} 根树的面积, 可能重复标签, 其中所有的脊椎都没有排序。 如果分区后的儿童细胞部分可辨别, 树的发育树代表的空间为 $\ mathcal{ P} 可能重复标签的根树的面积 。 对于 $\ mcal{ t} 树的长度无法辨别, 特别是 $mrcral_ 树的长度, 我们定义了两种标准: 最接近的 和最接近的直径的树的长度 。 在 最接近的 ral_ 的 ral_ 树的长度上, 最接近的 ral_ ral_ 的长度是 ror_ 。 在最接近的 的 ral 的 ral_ 的 ral_ ral_ 树的长度上, 。 在最接近的 ral_ ral_ ral_ 的长度的长度的长度的长度上, ral_ 。 在最接近的 ral_ ral_ ral_ r_ ral_ ral_ r_ ral_ ral_ 。