Efficient solution of 3D elasticity problems is an important part of many industrial and scientific applications. Smoothed aggregation algebraic multigrid using rigid body modes for the tentative prolongation operator construction is an efficient and robust choice for the solution of linear systems arising from the discretization of elasticity equations. The system matrices on every level of the multigrid hierarchy have block structure, so using block representation and block arithmetics should significantly improve the solver efficiency. However, the tentative prolongation operator construction may only be done using scalar representation. The paper proposes a couple of practical approaches for enabling the use of block arithmetics with smoothed aggregation algebraic multigrid based on the open-source AMGCL library. It is shown on the example of two real-world model problems that the suggested improvements may speed up the solution by 50% and reduce the memory requirements for the preconditioner by 30%. The implementation is straightforward and only requires a minimal amount of code.
翻译:3D弹性问题的有效解决方案是许多工业和科学应用的一个重要部分。 使用硬体体模式进行模拟延长操作器的模拟聚合代数多格格是因弹性方程式离散而产生的线性系统解决方案的有效和稳健选择。 多格网结构各级的系统矩阵都有块结构,因此使用区块表示法和区块计算法可以大大提高求解器的效率。然而,临时延长操作器的构造只能使用标度表示法完成。 本文提出若干切实可行的办法, 以便在开放源码AMGCL图书馆的基础上, 利用平滑的聚合代数多格计算。 以两种真实世界模式问题为例, 即建议的改进可以加速50%的解决方案, 并将先决条件的记忆要求减少30%。 实施过程简单明了, 只需要最低限度的代码。