We report the design of a morpho-functional robot called Husky Carbon. Our goal is to integrate two forms of mobility, aerial and quadrupedal-legged locomotion, within a single platform. There are prohibitive design restrictions such as tight power budget and payload, which can particularly become important in aerial flights. To address these challenges, we pose a problem called the Mobility Value of Added Mass (MVAM) problem. In the MVAM problem, we attempt to allocate mass in our designs such that the energetic performance is affected the least. To solve the MVAM problem, we adopted a generative design approach using Grasshopper's evolutionary solver to synthesize a parametric design space for Husky. Then, this space was searched for the morphologies that could yield a minimized Total Cost Of Transport (TCOT) and payload. This approach revealed that a front-heavy quadrupedal robot can achieve a lower TCOT while retaining larger margins on allowable added mass to its design. Based on this framework Husky was built and tested as a front-heavy robot.
翻译:我们报告了一个叫Husky Cablon的模光功能机器人的设计。 我们的目标是将两种形式的机动性、空中和四肢腿移动器整合在一个平台内。 有一些令人望而却步的设计限制, 例如紧力预算和有效载荷, 这在空中飞行中可能变得特别重要。 为了应对这些挑战, 我们提出了一个问题, 叫做“ 增加质量的流动价值 ” ( MVAM) 问题。 在MVAM 问题中, 我们试图在设计中分配质量, 使高能性能受到最小影响。 为了解决MVAM问题, 我们采用了一种基因化设计方法, 使用草鼠的进化解析器来合成Husky的参数设计空间。 然后, 对这一空间的形态进行了搜索, 以产生一个最小的运输总成本和有效载荷。 这种方法表明, 前重四重机器人可以在设计中保留更大的允许额外质量的利润。 根据这个框架, Husky 被建成并测试为前重机器人。