Safety assurance is a critical yet challenging aspect when developing self-driving technologies. Hamilton-Jacobi backward-reachability analysis is a formal verification tool for verifying the safety of dynamic systems in the presence of disturbances. However, the standard approach is too conservative to be applied to self-driving applications due to its worst-case assumption on humans' behaviors (i.e., guard against worst-case outcomes). In this work, we integrate a learning-based prediction algorithm and a game-theoretic human behavioral model to online update the conservativeness of backward-reachability analysis. We evaluate our approach using real driving data. The results show that, with reasonable assumptions on human behaviors, our approach can effectively reduce the conservativeness of the standard approach without sacrificing its safety verification ability.
翻译:在开发自我驱动技术时,安全保障是一个关键但具有挑战性的方面。 Hamilton-Jacobi的后向可达性分析是一个正式的核查工具,用于在出现动乱时核查动态系统的安全性。然而,标准方法过于保守,无法适用于自我驱动应用,因为其对人类行为(即防范最坏情况)的最坏假设。 在这项工作中,我们结合了基于学习的预测算法和游戏理论的人类行为模型,在线更新反向可达性分析的保守性。我们用真实驱动数据评估了我们的方法。结果显示,如果对人的行为做出合理的假设,我们的方法可以有效地降低标准方法的保守性,而不会牺牲其安全核查能力。