Grounded Situation Recognition (GSR) aims to generate structured semantic summaries of images for "human-like" event understanding. Specifically, GSR task not only detects the salient activity verb (e.g. buying), but also predicts all corresponding semantic roles (e.g. agent and goods). Inspired by object detection and image captioning tasks, existing methods typically employ a two-stage framework: 1) detect the activity verb, and then 2) predict semantic roles based on the detected verb. Obviously, this illogical framework constitutes a huge obstacle to semantic understanding. First, pre-detecting verbs solely without semantic roles inevitably fails to distinguish many similar daily activities (e.g., offering and giving, buying and selling). Second, predicting semantic roles in a closed auto-regressive manner can hardly exploit the semantic relations among the verb and roles. To this end, in this paper we propose a novel two-stage framework that focuses on utilizing such bidirectional relations within verbs and roles. In the first stage, instead of pre-detecting the verb, we postpone the detection step and assume a pseudo label, where an intermediate representation for each corresponding semantic role is learned from images. In the second stage, we exploit transformer layers to unearth the potential semantic relations within both verbs and semantic roles. With the help of a set of support images, an alternate learning scheme is designed to simultaneously optimize the results: update the verb using nouns corresponding to the image, and update nouns using verbs from support images. Extensive experimental results on challenging SWiG benchmarks show that our renovated framework outperforms other state-of-the-art methods under various metrics.


翻译:地表状态识别 (GSR) 旨在生成结构化的图像语义摘要, 以便“ 人类” 事件理解。 具体地说, GSR 任务不仅检测突出的活动动词( 例如购买), 而且还预测所有相应的语义作用( 例如代理和货物 ) 。 受对象检测和图像字幕任务的启发, 现有方法通常使用一个两阶段框架:1 检测活动动词, 然后2) 根据所检测到的动词来预测语义作用。 显然, 这个不合逻辑的框架构成了对语义理解的巨大障碍。 首先, 仅仅在没有语义作用的情况下预检测动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动动词( 例如提供和提供、 购买和出售) 。 其次, 以封闭的自动反动动动动动动动动动动动动动动动动动动动动动动动动动动动动动的图像, 将演化的变动变动图显示每个变形变形变形变形的变形的变形, 变形的变形的演变形, 演变形的演变形的变形的变形, 变形的变形的演变形的演变形, 变形的变形, 变形的变形的变形的变形, 变形的变形的变形, 变形的变形的变形, 变形的变形的变形, 变形的变形的变形的变形的变形的变形的变形, 变形的变形的变形的变形的变形, 变形, 变形, 变形的变形的变形的变形的变形, 变形的变形, 变形的变形, 变形的变形的变形的变形的变形的变形, 变形的变形的变形的变形的变形的变形的变形的变形的变形, 变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形,

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员