Panoramic radiography (Panoramic X-ray, PX) is a widely used imaging modality for dental examination. However, PX only provides a flattened 2D image, lacking in a 3D view of the oral structure. In this paper, we propose a framework to estimate 3D oral structures from real-world PX. Our framework tackles full 3D reconstruction for varying subjects (patients) where each reconstruction is based only on a single panoramic image. We create an intermediate representation called simulated PX (SimPX) from 3D Cone-beam computed tomography (CBCT) data based on the Beer-Lambert law of X-ray rendering and rotational principles of PX imaging. SimPX aims at not only truthfully simulating PX, but also facilitates the reverting process back to 3D data. We propose a novel neural model based on ray tracing which exploits both global and local input features to convert SimPX to 3D output. At inference, a real PX image is translated to a SimPX-style image with semantic regularization, and the translated image is processed by generation module to produce high-quality outputs. Experiments show that our method outperforms prior state-of-the-art in reconstruction tasks both quantitatively and qualitatively. Unlike prior methods, Our method does not require any prior information such as the shape of dental arches, nor the matched PX-CBCT dataset for training, which is difficult to obtain in clinical practice.
翻译:暂无翻译